欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
数控铣齿比能耗与工件粗糙度预测优化
DOI:
作者:
作者单位:

1.南京工程学院先进数控技术江苏省高校重点实验室;2.南京工大数控科技有限公司

作者简介:

通讯作者:

中图分类号:

TG61????????????????????

基金项目:

国家自然科学基金(51405220)、南京工程学院校级科研基金(JCYJ201843)、江苏省研究生实践创新项目(SJCX23_1182)。


Numerical Control Milling Gear Specific Energy Consumption and Workpiece Roughness Prediction Optimization
Author:
Affiliation:

1.Jiangsu Key Laboratory of Advanced Numerical Control Technology,Nanjing institute of Technology;2.Nanjing Gongda CNC Technology CoLtd

Fund Project:

The National Natural Science Foundation of China (51405220), the University-level Research Fund of Nanjing Institute of Technology (JCYJ201843), the Jiangsu Graduate Practical Innovation Project (SJCX23_1182).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    根据铣齿机床能耗与工件表面粗糙度信息,提出了一种结合多元非线性拟合和粒子群算法的预测优化方法,旨在为齿轮铣削提供优选工艺参数。基于数控铣齿机床动力结构建立能耗模型,进而提出铣齿切削比能的概念;开展正交和全析因实验对多工况铣齿机床的功率和表面粗糙度数据进行监测;通过多元非线性拟合函数建立机床切削比能和工件粗糙度的预测模型;将拟合目标函数组代入粒子群算法进行工艺参数的优化。实验结果表明,基于多元非线性拟合的预测模型拟合优度均超过了0.99,采用粒子群算法求解获得的八组解集考虑到了机床节能增效的客观需要。

    Abstract:

    According to the energy consumption and workpiece surface roughness information of gear milling machine, a predictive optimization method combining multivariate nonlinear fitting and particle swarm optimization algorithm is proposed to provide the optimal process parameters for gear milling. Based on the dynamic structure of NC gear milling machine, the energy consumption model is established, and the concept of cutting specific energy of gear milling is put forward. Orthogonal and full factorial experiments were carried out to monitor the power and surface roughness data of multi-operating gear milling machine. The prediction model of machine tool specific energy and workpiece roughness is established by multivariate nonlinear fitting function. The fitting objective function group was substituted into particle swarm optimization algorithm to optimize the process parameters. The experimental results show that the goodness of fit of the prediction model based on multivariate nonlinear fitting is more than 0.99, and the eight solution sets obtained by particle swarm optimization algorithm take into account the objective needs of machine tool energy saving and efficiency improvement.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-25
  • 最后修改日期:2023-07-25
  • 录用日期:2023-09-08
  • 在线发布日期:
  • 出版日期: