欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
视觉图像与三维点云融合的障碍物主动识别与距离感知研究
DOI:
作者:
作者单位:

广东电网有限责任公司广州白云供电局

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Active Recognition and Distance Perception of Obstacles Based on Fusion of Visual Image and 3D Point Cloud
Author:
Affiliation:

Guangzhou Baiyun Power Supply Bureau of Guangdong Power Grid Co., Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对无人机配电线自动巡检及绝缘层涂覆维护过程中障碍物主动识别和距离感知问题,提出了视觉图像与三维点云相结合的障碍物识别方法。对图像进行增广预处理丰富数据集,引入基于特征提取的深度学习进行模型训练,获取障碍物目标的类别和方位,结合三维点云信息,得到目标的距离信息。实验结果表明,这种组合了两类传感器数据优点的方法实用有效,最大识别误差为2.356%,主动障碍物识别方法有助于提高无人机及线缆涂覆机器人的障碍感知能力,保障作业安全。

    Abstract:

    To address the challenges related to obstacle recognition and distance perception in the context of unmanned aerial vehicle (UAV) automatic inspection of distribution lines and maintenance involving insulation layer coating, a method combining visual images and three-dimensional point clouds for obstacle identification is proposed. Data augmentation preprocessing is applied to enhance the dataset of images. A deep learning approach based on feature extraction is introduced for model training, enabling the identification of obstacle categories and orientations. Distance measurements for the detected targets are obtained by integrating three-dimensional point cloud information. Experimental results demonstrate the practical effectiveness of this approach, which combines the advantages of two types of sensor data. The maximum recognition error is 2.356%. The proactive obstacle identification method contributes to enhancing the obstacle perception capabilities of UAVs and coating robots, thus ensuring operational safety.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-31
  • 最后修改日期:2023-08-31
  • 录用日期:2023-09-12
  • 在线发布日期:
  • 出版日期: