欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
融合少样本学习与注意力端到端网络的小目标在线检测研究
DOI:
作者:
作者单位:

广东电网有限责任公司广州白云供电局

作者简介:

通讯作者:

中图分类号:

基金项目:


Research on Online Detection of Small Foreign Objects Using Few-shot Learning and Attention-based End-to-End Networks
Author:
Affiliation:

(Guangzhou Baiyun Power Supply Bureau of Guangdong Power Grid Co., Ltd

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    小目标检测是计算机视觉领域的研究方向之一,旨在解决在图像或视频中检测和定位尺寸较小的目标的问题。由于小目标往往具有低分辨率、模糊、被遮挡等特点,传统的目标检测算法在处理小目标时存在挑战。对此,本文提出了一种融合少样本学习与注意力端到端网络的小目标检测方法。该方法通过引入图像增强技术和注意力机制,对传统的端到端检测网络进行优化,以提高检测性能。首先,通过数据增强的方式,对原始数据进行扩充,增加数据的多样性和数量。然后,引入注意力机制,提取图像中的关键信息,以提升检测结果的准确性。最后,在网络结构方面,本文将原有的FPN(Feature Pyramid Network)网络替换为BiFPN(Bi-directional Feature Pyramid Network),以获取更丰富的图像特征。实验结果表明,通过图像增强和注意力机制,本文所提方法的精准率(P)、查全率(R)、平均精度均值(Mean Average Precision,mAP)和FPS分别为98.41%、99.54%、99.50%和28,相较于常用的主流算法分别提升了2.91%、5.9%、1.93%和2,验证了该方法的有效性和可行性。

    Abstract:

    Small object detection is one of the research directions in the field of computer vision, aiming to address the problem of detecting and locating small objects in images or videos. Traditional object detection algorithms face challenges in handling small objects due to their low resolution, blurriness, and occlusion. To address this issue, a novel approach is proposed for small foreign object detection that combines few-shot learning with attention-based end-to-end networks in this paper. This method optimizes the traditional end-to-end detection network by introducing image enhancement and attention mechanisms to improve the detection performance. Firstly, the original data is augmented using data augmentation techniques to increase the diversity and quantity of the data. Then, an attention mechanism is incorporated to extract crucial information from the images and improve the accuracy of the detection results. Finally, in terms of network structure, the study replaces the original FPN network with BiFPN to obtain richer image features. Experimental results demonstrate that the proposed method achieves precision, recall, mean average precision (mAP), and FPS of 98.41%, 99.54%, 99.50%, and 28, respectively, surpassing mainstream algorithms by improvements of 2.91%, 5.9%, 1.93%and 2 through image augmentation and attention mechanisms and validating the effectiveness and feasibility of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-31
  • 最后修改日期:2023-08-31
  • 录用日期:2023-09-12
  • 在线发布日期:
  • 出版日期: