文章摘要
刘岩,王金东,赵海洋,王斌武,韩兴国.基于谱估计与核模糊聚类的往复压缩机轴承故障评估方法[J].机床与液压,2022,50(12):174-180.
LIU Yan,WANG Jindong,ZHAO Haiyang,WANG Binwu,HAN Xingguo.Bearings Fault Evaluation of Reciprocating Compressor Based on Spectral Estimation and KFCM[J].Machine Tool & Hydraulics,2022,50(12):174-180
基于谱估计与核模糊聚类的往复压缩机轴承故障评估方法
Bearings Fault Evaluation of Reciprocating Compressor Based on Spectral Estimation and KFCM
  
DOI:10.3969/j.issn.1001-3881.2022.12.032
中文关键词: 往复压缩机  故障评估  变分模态分解(VMD)  核模糊C均值聚类(KFCM)  谱估计
英文关键词: Reciprocating compressor  Fault evaluation  Variation mode decomposition (VMD)  Kernel-based fuzzy C-means clustering method (KFCM)  Spectral estimation
基金项目:中国博士后科学基金项目(2015M423):广西自然科学基金项目(2018GXNSFAA281306)
作者单位E-mail
刘岩 桂林航天工业学院能源与建筑环境学院 1300983279@qq.com 
王金东 东北石油大学机械科学与工程学院  
赵海洋 东北石油大学机械科学与工程学院  
王斌武 桂林航天工业学院能源与建筑环境学院  
韩兴国 桂林航天工业学院能源与建筑环境学院  
摘要点击次数: 54
全文下载次数: 0
中文摘要:
      针对往复机轴承性能衰退评估中模型适应性和指标量化困难等问题,提出一种基于奇异谱分布与核模糊C均值聚类算法(KFCM)的性能衰退评估方法。利用变分模态分解(VMD)算法提取并优选主模态多重分形奇异谱(MSS)构成谱形态参量,经奇异值分解降噪处理,建立KFCM与二叉树支持向量机相结合的评估模型,并给出完整的轴承性能衰退评估流程;进行压缩机轴承磨损故障模拟及算法对比分析。结果表明:该方法能有效评定滑动轴承磨损故障性能衰退程度。
英文摘要:
      In view of the model adaptability and the difficulty of index quantifying for reciprocating compressor bearings performance degradation evaluation,a performance degradation evaluation algorithm was proposed based on singular spectrum distribution and kernel-based fuzzy C-means clustering method (KFCM).The multifractal singular spectrums (MSS) was extracted by using variation mode decomposition (VMD),the evaluation model combined with KFCM and binary tree SVM was established after denoised through singular value decomposition,and a complete bearings performance degradation evaluation process was given;compressor bearing wear fault simulation and algorithm comparative analysis were carried out.The results show that by using this method,the sliding bearing wear failure performance degradation degree can be effectively evaluated.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮