文章摘要
王帅星,嵇玉辰,王晓笋,巫世晶.运架一体机行走液压系统泄漏故障仿真与诊断[J].机床与液压,2021,49(2):158-162.
WANG Shuaixing,JI Yuchen,WANG Xiaosun,WU Shijing.Simulation and Diagnosis of Leakage Fault of Traveling Hydraulic System of YJ900 Transported Frame Integrated Grider Machine[J].Machine Tool & Hydraulics,2021,49(2):158-162
运架一体机行走液压系统泄漏故障仿真与诊断
Simulation and Diagnosis of Leakage Fault of Traveling Hydraulic System of YJ900 Transported Frame Integrated Grider Machine
  
DOI:10.3969/j.issn.1001-3881.2021.02.32
中文关键词: YJ900运架一体机  行走液压系统  故障诊断  BP神经网络  粒子群优化算法(PSO)
英文关键词: YJ900 transported frame integrated grider machine  Travelling hydraulic system  Fault diagnosis  BP neural network  Particle swarm optimization (PSO)algorithm
基金项目:工信部智能制造专项(2017GXB530026)
作者单位E-mail
王帅星 武汉大学动力与机械学院 wangsx@whu.edu.cn 
嵇玉辰 武汉大学动力与机械学院  
王晓笋 武汉大学动力与机械学院  
巫世晶 武汉大学动力与机械学院  
摘要点击次数: 84
全文下载次数: 0
中文摘要:
      针对YJ900运架一体机行走液压系统容易发生的内泄漏故障问题,运用AMESim软件建立其液压仿真模型。模型中引入泵泄漏、马达泄漏以及泵和马达同时存在泄漏3种典型故障模式,并采集液压马达进出口数据作为样本。将数据样本分为训练样本和测试样本,将训练样本输入MATLAB搭建BP神经网络故障诊断模型,并用测试样本完成故障模型的测试。主要研究神经元个数以及训练样本数对故障诊断成功率的影响。利用粒子群优化算法(PSO)对BP神经网络进行初始权重和偏置的优化,从而显著提高了少训练样本下的故障诊断成功率
英文摘要:
      Aiming at the problem of internal leakage fault easily occurred in the travelling hydraulic system of YJ900 transported frame integrated grider machine,AMESim was used to establish the hydraulic simulation model.Pump leakage,motor leakage and simultaneous leakage of the pump and motor were introduced into the model,the hydraulic motor inlet and outlet data were collected as samples.The data samples were divided into training samples and test samples.The training samples were input into the MATLAB to build a BP neural network fault diagnosis model and the test samples were employed to test the fault model.The influence of the number of neurons and the number of training samples on the success rate of fault diagnosis was studied.Particle swarm optimization (PSO) algorithm was used to optimize the initial weight and bias of BP neural network,by which the success rate of fault diagnosis under the condition of less training samples was significantly improved
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮