文章摘要
赵丽丽.基于深度学习的混联机械臂轨迹运动容错算法研究[J].机床与液压,2021,49(3):35-40.
ZHAO Lili.Research on Fault Tolerance Algorithm for Trajectory Motion of Hybrid Manipulator Based on Deep Learning[J].Machine Tool & Hydraulics,2021,49(3):35-40
基于深度学习的混联机械臂轨迹运动容错算法研究
Research on Fault Tolerance Algorithm for Trajectory Motion of Hybrid Manipulator Based on Deep Learning
  
DOI:10.3969/j.issn.1001-3881.2021.03.008
中文关键词: 混联机械臂  深度学习  DBNs模型  收敛性能  容错机制
英文关键词: Hybrid manipulator  Deep learning  DBNs model  Convergence performance  Fault tolerance mechanism
基金项目:山东管理学院校级重点课题(XJ20180104);国家中医药管理局中医药行业科研专项(2015468003-2-3)
作者单位E-mail
赵丽丽 山东管理学院信息工程学院山东省高等学校中医药数据云服务重点实验室(山东管理学院) lili1986@sina.com 
摘要点击次数: 75
全文下载次数: 0
中文摘要:
      针对混联机械臂轨迹控制偏差大、难度高的问题,提出一种基于深度学习的容错算法。在笛卡尔空间内基于非线性函数确定关节向量间的相关性,并改善轨迹容错纠偏的收敛性能;基于DBNs模型训练混联机械臂动态位置移动信息,在全局范围内搜索最优解;根据每个关节空间移动轨迹特征和深度学习容错机制,保证机械臂系统闭环操作的稳定性和适用性。仿真结果表明:采用提出的容错算法,6个关节实际移动曲线与期望曲线的偏差程度较小,算法的复杂程度更低。
英文摘要:
      Aiming at the problems of large deviation and high difficulty in trajectory control of hybrid manipulator, a fault tolerant algorithm based on depth learning was proposed. In Cartesian space, the correlation between joint vectors was determined based on non linear function, and the convergence performance of the trajectory fault tolerant correction was improved; the dynamic position movement information of the hybrid manipulator was trained based on DBNs model, and the optimal solution was searched in the global scope; the stability and applicability of the closed loop operation of the manipulator system were guaranteed according to the trajectory characteristics of each joint space and the depth learning fault tolerant mechanism. The simulation results show that the deviation between the actual movement curve and the expected curve of the six joints is small, and the complexity of the algorithm is lower.
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮