欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
数字伺服系统机械谐振频率偏移现象机制分析及实验研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

科技部重点研发计划工业机器人伺服电机与驱动产品性能优化(2017YFB1300800)


Analysis and Experiment Research on Mechanical Resonance Frequency Deviation in Digital Servo System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高刚度的伺服系统在柔性传动机构中极易引起机械谐振。为提高系统的鲁棒性,通常采用自适应陷波滤波器,但会产生机械谐振频率偏移现象,无法快速实现振动抑制。基于此现象,从系统阻尼、离散化周期以及陷波器串入3个角度对机械谐振频率的影响进行了定量分析,深入剖析机械谐振频率偏移现象的机制,揭示了谐振频率变化的本质原因。通过理论分析,得出在谐振出现偏移现象时最有效最快速的陷波频率仍是系统自然谐振频率(NTF)的结论。最后,通过MATLAB/Simulink和实验验证了理论分析的正确性与有效性。

    Abstract:

    The mechanical resonance can be easily induced in the flexible transmission mechanisms in which high-stiffness servo systems are used. In order to improve the robustness of the system, the adaptive notch filter is often used, however, it will lead to mechanical resonance frequency deviation,therefore resonance suppression cannot be effectively realized. Based on this phenomenon, the influence to the mechanical frequency was quantitatively analyzed from the perspectives of system damping, discretization period and notch filter. The mechanism of mechanical resonance frequency deviation was analyzed in detail, and the core reason for resonance frequency deviation was revealed. It is concluded that the most effective notch frequency is still the natural resonant frequency (NTF) during resonance frequency deviation. Finally, simulation on MATLAB/Simulink and experiment verify the correctness and effectiveness of the conclusion and analysis.

    参考文献
    相似文献
    引证文献
引用本文

张军,陈扬洋,张杰,杨明.数字伺服系统机械谐振频率偏移现象机制分析及实验研究[J].机床与液压,2022,50(14):40-45.
ZHANG Jun, CHEN Yangyang, ZHANG Jie, YANG Ming. Analysis and Experiment Research on Mechanical Resonance Frequency Deviation in Digital Servo System[J]. Machine Tool & Hydraulics,2022,50(14):40-45

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-01-17
  • 出版日期: 2022-07-28