欢迎访问机床与液压官方网站!

咨询热线:020-32385312 32385313 RSS EMAIL-ALERT
用于旋转超声波加工的非接触电能传输耦合器的优化设计
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(51605331);天津市教委科研计划项目(2017KJ107);天津职业技术师范大学预研项目(KYQD1711)


Optimal Design of Contactless Power Transmission Coupler for Rotating Ultrasonic Machining
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    旋转超声波加工设备可以采用非接触电能传输耦合器为高速旋转的超声振子提供电能,以取代传统的接触式碳刷滑环,这种非接触电能传输方式安全、稳定,且对转速没有限制。但由于主次级磁芯之间存在间隙,使其漏磁通较大,功率传输能力较低。为提高非接触旋转耦合器的功率传输能力,采用有限元仿真和实验的方法,通过对比分析不同材质及结构形式耦合器的磁通分布情况、线圈自感、线圈间互感、耦合系数、线圈交流电阻等参数,对耦合器进行了优化设计。优化后的非接触旋转耦合器具有更高的耦合能力及功率传输能力。

    Abstract:

    Rotary contactless power transmission couplers can be used for rotating ultrasonic machining equipment to provide power for highspeed rotating ultrasonic vibrators to replace the traditional contact carbon brush and slip rings.Such contactless power transmission method is safe and stable, and has no restriction on the speed. However, due to the gap between the primary and secondary magnetic cores, the leakage flux is large and the power transmission capacity is low. In order to improve the power transmission capability of the contactless rotary coupler, finite element simulation and experiments were used to optimize the design of the coupler by comparing and analyzing the magnetic flux distribution, coil selfinductance, mutual inductance between coils, coupling coefficient, coil AC resistance and other parameters of couplers with different materials and structures. The optimized contactless rotary coupler has higher coupling capacity and power transmission capacity.

    参考文献
    相似文献
    引证文献
引用本文

朱学明,林彬,李占杰,崔雨潇,雍华山.用于旋转超声波加工的非接触电能传输耦合器的优化设计[J].机床与液压,2021,49(7):84-88.
ZHU Xueming, LIN Bin, LI Zhanjie, CUI Yuxiao, YONG Huashan. Optimal Design of Contactless Power Transmission Coupler for Rotating Ultrasonic Machining[J]. Machine Tool & Hydraulics,2021,49(7):84-88

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-03-01
  • 出版日期: 2021-04-15